数据分析网(消费数据分析网)
【点击查看】低成本上班族靠谱副业好项目 | 拼多多无货源创业7天起店爆单玩法
【点击查看】逆林创业记 | 拼多多电商店铺虚拟类项目新玩法(附完整词表&检测工具)
【点击查看】逆林创业记 | 小白ai写作一键生成爆文速成课
领300个信息差项目,见公众号【逆林创业记】(添加请备注:网站)
报名啦 机器学习培训报名开始啦!
顶级讲师课程设计
理论结合实际
更有四大福利提供
点击文末“阅读原文”查看详细
我特别不喜欢装的产品经理,看文章也一样不喜欢华而不实的。所以督促自己写文章时,把懂的、经历过的能细就写的尽量详细;不懂的就去学,然后把整理的笔记分享出来,数据分析方面我涉入不多,内容由于缺少实战经验,会比较基础和理论,希望同样对你有帮助。
◆◆◆1、明确分析的目标
做数据分析,必须要有一个明确的目的,知道自己为什么要做数据分析,想要达到什么效果。比如:为了评估产品改版后的效果比之前有所提升;或通过数据分析,找到产品迭代的方向等。
明确了数据分析的目的,接下来需要确定应该收集的数据都有哪些。
◆◆◆2、收集数据的方法
说到收集数据,首先要做好数据埋点。
所谓“埋点”,个人理解就是在正常的功能逻辑中添加统计代码,将自己需要的数据统计出来。
目前主流的数据埋点方式有两种:
第一种:自己研发。开发时加入统计代码,并搭建自己的数据查询系统。
第二种:利用第三方统计工具。
常见的第三方统计工具有:
网站分析工具
Alexa、中国网站排名、网络媒体排名(iwebchoice)、Google Analytics、百度统计
移动应用分析工具
Flurry、Google Analytics、友盟、TalkingData、Crashlytics
不同产品,不同目的,需要的支持数据不同,确定好数据指标后数据分析网,选择适合自己公司的方式来收集相应数据。
◆◆◆3. 产品的基本数据指标
新增:新用户增加的数量和速度。如:日新增、月新增等。
活跃:有多少人正在使用产品。如日活跃(DAU)、月活跃(MAU)等。用户的活跃数越多,越有可能为产品带来价值。
留存率:用户会在多长时间内使用产品。如:次日留存率、周留存率等。
传播:平均每位老用户会带来几位新用户。
流失率:一段时间内流失的用户,占这段时间内活跃用户数的比例。
◆◆◆4. 常见的数据分析法和模型
这里主要科普下漏斗分析法和AARRR分析模型。
漏斗分析法
用来分析从潜在用户到最终用户这个过程中用户数量的变化趋势,从而寻找到最佳的优化空间,这个方法被普遍用于产品各个关键流程的分析中。
比如,这个例子是分析从用户进入网站到最终购买商品的变化趋势。
从用户进入网站到浏览商品页面,转化率是40%;浏览商品到加入购物车转化率是20%等,那要找出哪个环节的转化率最低,我们需要有对比数据。
比如第一个,进入网站到浏览商品,如果同行业水平的转化率是45%,而我们只有40%,那说明这个过程,没有达到行业平均水平,我们就需要分析具体原因在哪里,再有针对性的去优化和改善。
当然,上面这是我们设计的一种理想化的漏斗模型,数据有可能是经过汇总后得出的。而真实的用户行为往往可能并不是按照这个简单流程来的。此时需要分析用户为什么要经过那么复杂的路径来达到最终目的,思考这中间有没有可以优化的空间。
AARRR模型
这个是所有的产品经理都必须要掌握的一个数据分析模型。
AARRR(Acquisition、Activation、Retention、Revenue、Refer)是硅谷的一个风险投资人戴维 · 麦克鲁尔在2008年时创建的,分别是指获取、激活、留存、收入和推荐。
举个例子,用AARRR模型来衡量一个渠道的好坏。
如果单从数据表面来看,A渠道会更划算,但实际这种结论是有问题的,用AARRR模型具体分析如下:
渠道A的单个留存用户成本是60元,单个付费用户成本是300元;而渠道B的单个留存用户成本是20元,单个付费用户成本是33元,这样对比下来,明显B渠道的优势远远大于A渠道。
交叉分析法
通常是把纵向对比和横向对比综合起来,对数据进行多角度的结合分析。
举个例子:
a. 交叉分析角度:客户端+时间
从这个数据中数据分析网,可以看出iOS端每个月的用户数在增加,而Android端在降低,总体数据没有增长的主要原因在于Android端数据下降所导致的。
那接下来要分析下为什么Android端二季度新增用户数据在下降呢?一般这个时候,会加入渠道维度。
b. 交叉分析角度:客户端+时间+渠道
从这个数据中可以看出,Android端A预装渠道占比比较高,而且呈现下降趋势,其他渠道的变化并不明显。
因此可以得出结论:Android端在二季度新增用户降低主要是由于A预装渠道降低所导致的。
所以说,交叉分析的主要作用,是从多个角度细分数据,从中发现数据变化的具体原因。
◆◆◆5. 如何验证产品新功能的效果
验证产品新功能的效果需要同时从这几方面入手:
a. 新功能是否受欢迎?
衡量指标:活跃比例。即:使用新功能的活跃用户数/同期活跃用户数。
使用人数的多少还会受该功能外的很多因素影响,千万不可只凭这一指标判断功能好坏,一定要结合下面的其他方面综合评估。
b. 用户是否会重复使用?
衡量指标:重复使用比例。即:第N天回访的继续使用新功能的用户数/第一天使用新功能的用户数。
c. 对流程转化率的优化效果如何?
衡量指标:转化率和完成率。转化率即:走到下一步的用户数/上一步的用户数。完成率即:完成该功能的用户数/走第一步的用户数。
这个过程中,转化率和完成率可以使用(上)篇中提到的漏斗分析法进行分析。
d. 对留存的影响?
衡量指标:留存率。用户在初始时间后第N天的回访比例,即:N日留存率。常用指标有:次日留存率、7日留存率、21日留存率、30日留存率等。
e. 用户怎样使用新功能?
真实用户行为轨迹往往比我们设想的使用路径要复杂的多,如果使用的数据监测平台可以看到相关数据,能引起我们的反思,为什么他们会这么走,有没有更简便的流程,以帮助我们作出优化决策。
◆◆◆6. 如何发现产品改进的关键点
产品改进的关键点,是藏在用户的行为中。
想要找到这些关键点,除了通过用户调研、访谈等切实的洞察用户外,在产品中设置相关数据埋点记录用户的行为,观察其行为轨迹,不能完全替代洞察用户的行为,不过也可以有助于决策产品改进点。
操作步骤:
文章评论(0)